数据分析这么干,运营吵架少一半

本文笔者将以活动运营的工作为例,为大家讲述数据分析师如何在数据分析方面更好地辅助运营工作的进行的迭代。文章所述数据分析的策略和解决问题的方法同样适用于各位运营借鉴~

数据分析这么干,运营吵架少一半

做数据分析的同学最常服务运营,也最怕运营纠结。因为本身运营的工作和数据分析有高度关联,以至于大家在网上看到的数据分析文章,十篇里有六篇是运营写的。

运营对数据分析涉入的如此之深,以至于经常在分析思路、分析方法、分析结论上和数据分析师们怼起来。

今天我们就先看其中最大的一个问题。运营的工种有很多(如下图),其中活动运营是策略性最强,和数据分析关系最紧密,也是怼的最多的岗位,今天就用它举例子。

数据分析这么干,运营吵架少一半

请听题:

某游戏APP,用户活跃率在5月出现轻微下降情况,活动运营小组决定做一个签到打卡的活动,提高用户活跃度(具体提高多少没说)。

现活动前后数据如下图所示,活动运营小组坚持称:如果不是做活动,5月份自然增长是下跌的。

老板认为这是扯淡。

活动运营小组称:数据分析师应利用人工智能大数据,精准分析出自然增长率。

数据分析这么干,运营吵架少一半

问:你是数据分析师,你该怎么办?

科学旗号下的荒唐事

首先问:

这个题的题眼在哪里?

A、用户活跃率减少

B、自然增长率

C、人工智能大数据

我们先反问一个问题:某天,一个人拿着弓来问你:“请用人工智能大数据精确分析一下,我比自然命中率高了多少”你会怎么办?你会抄起键盘开始叭叭写代码吗?——不会!你会先问他:“你射的是啥?”

如果他说:我也不知道射的啥,你帮我分析分析?你会咋办?你会用人工智能大数据分析他要射什么东西吗?——当然不会!有礼貌的话,你会让他先把自己射的箭找到;没礼貌的话,你可以直接口吐芬芳了。因为即使是幼儿园的小朋友都知道:射箭要先树个靶子。这是常识。

所以整体的题眼是:具体提高多少没说。甚至题目本身都是有问题的。请注意问题的来源是活跃用户数量减少。结果运营在设目标的时候变成了用户活跃。一字之差,含义就从清晰变模糊。

  • 到底什么算“度”
  • 含义是用户活跃人数,为啥不直接用?
  • 含义是用户活跃率?大家的公式是否一样?
  • 含义是综合计算的,计算公式和权重又是啥?

指标本身不清晰,又没有明确指出要提升多少,对活动后分析是一场灾难。简直就是射箭故事的翻版。问题是:为啥会出这么奇葩的事。

荒唐背后的苦衷

真正在企业上过班就知道:并非所有决策都是高度理性的,比如:

  • 这是常规活动,运营只是拿着模板改了改就推上线了
  • 这是老板亲自指示干的,咱也看不懂,咱也不敢问
  • 这是一种商业直觉:我感觉有问题了!等到真观察到再改已经来不及了
  • 这是一种迷信:你们不是有人工智能大数据吗,应该duang!一下就有了吧

总之,真实企业里,大概:

  • 30%的活动方案没有写清楚,只有个含糊的:“提高消费/提高活跃”
  • 30%的活动方案用词不严谨,活跃度、活跃值、活跃力一类的玄幻概念满天飞
  • 30%的活动方案没有做过测算,都是拍脑袋决策,甚至提1亿的目标,只为口号顺口。
  • 只有大概10%方案能认真写清楚:提高用户活跃人数,5月dau维持在XX水平以上

当然,在管理规范的大企业里,这种乱象少很多。但是同类问题在大部分企业都存在,事先不写清楚目标,事后指望大数据来分析。

甚至企图通过人造一个很低的、负增长的自然增长率,来蒙混过关。真要是碰上这种事,咋办呢?

首先,坚决不扯什么“自然增长率”。特别是在这种短期活动很密集的业务里。如果一定要扯,采用买定离手的机制:大家事先谈好自然增长率是多少,事后就看这个数,不要再调整。这就跟下棋的时候拒绝悔棋是一个道理。

  1. 做什么目标,事先说清楚,从X%提升到y%;
  2. 找清晰、直观的目标,避免玄幻/复杂概念;
  3. 找与核心KPI相关的目标,避免杂项干扰。

这是彻底解决问题的三大原则。

当然,这么做会遇到两个挑战:

  • 挑战1:有些运营就是不知道咋定目标,帮帮忙?
  • 挑战2:有些活动就是事先没定目标,咋补救?

设定目标基本方法

设定目标有三种基本方法:

  1. KPI分解法
  2. KPI倒推法
  3. KPI场景法

分别对应:

  1. 活动目标是KPI指标
  2. 活动目标是KPI过程指标
  3. 活动目标是KPI关联指标

三个场景

有同学会问:为啥都和KPI挂钩?答:如果做的事跟KPI没啥关系,那你也知道这个事的重要紧急程度了。大张旗鼓做和KPI无关的事,本身就有可能是影响KPI的原因哈。

KPI分解法举例:

数据分析这么干,运营吵架少一半

KPI倒推法举例:

数据分析这么干,运营吵架少一半

KPI场景法举例:

数据分析这么干,运营吵架少一半

平时和运营保持良好的沟通非常必要,这样在策划早起,数据分析师就能介入。既能协助运营理清思路,又能帮助运营算清目标,还能为上线后监控、事后复盘做好准备,一举三得。事前工作到位,事后不用吵架,大家合作共赢,是最好的状态。

事后补救的基本方法

如果事前没有定目标,一定要事后补救的话,牢记:核心不是什么自然增长率,而是“业务到底需要把指标做成什么样子”。特别是如同开头的情况。整体目标已经扑街的情况下,事后再纠结自然增长率,往往会沦为甩锅大战。这时候可以分三步做:

第一步:定方向

数据分析这么干,运营吵架少一半

第二步:找方法

数据分析这么干,运营吵架少一半

第三步:看细节

数据分析这么干,运营吵架少一半

通过这样的操作,至少能结束稀里糊涂的状态,明确:我们到底要把曲线做成什么样。判断本次的方法要换成那种。在细节里,为下一次迭代找到优化方向。

注意,这么做更多是基于“目前已扑街”的判断。这么做在评估活动效果上并不科学。如果想科学评估活动,得事前设计好实验,分好测试组和参照组,测试用户响应效果。还是那句话:提前多准备,事后少纠结。

很多同学会说:即使这样做,我们公司的领导还是很迷信,运营还是很无脑,出了问题还是到处甩锅,咋办!即使这样,陈老师也建议大家先掌握:这个事该怎么做。这样遇到问题,至少大家能判断:到底是我的问题,还是别人的问题。至少能知道该往哪个方向努力。这也是真实商业场景和科学实验室的区别:你就是得带着镣铐跳舞,在有限的数据,各种类型的同事,过高过低的期望值之间走钢丝。

有同学会说:咦?咋只少了一半打架,另一半是啥?

答:是活动事后分析的另一个永恒纠结的问题:你做这个又怎样!为什么活跃用户人数不能再高点?高了怎么多又如何呢?它一个指标高了,其他低了,又咋办!这就是我们常说的综合评估问题(陈老师习惯简称:又如何问题)。

作者:接地气的陈老师

来源:微信公众号:接地气学堂

特别申明:本站的主旨在于收集互联网运营相关的干货知识,给运营小伙伴提供便利。网站所收集到的公开内容均来自于互联网或用户投稿,并不代表本站认同其观点,也不对网站内容的真实性负责,如有侵权,请联系站长删除,转载请注明出处:数据分析这么干,运营吵架少一半:https://www.zcly.cn/38806.html。
(0)
榴芒小丸子的头像榴芒小丸子贡献者
上一篇 2020年5月18日 15:32
下一篇 2020年5月18日 17:25

猜你喜欢

发表回复

登录后才能评论

QQ:1124602020
微信:vl54120
备注:周一至周五全天在线,周末可能不在线,另外联系时,请告知来意。

公众号
交流群
运营狗会员,开通可享海量资源与多项权益,点击了解详情